ON BANACH SPACES WITH UNCONDITIONAL BASES

BY

Wolfgang Lusky

Institute for Mathematics, University of Paderborn Warburger Straße 100, D-33098 Paderborn, Germany e-mail: lusky@uni-paderborn.de

ABSTRACT

Let X be a Banach space with a sequence of linear, bounded finite rank operators $R_n\colon X\to X$ such that $R_nR_m=R_{\min(n,m)}$ if $n\neq m$ and $\lim_{n\to\infty}R_nx=x$ for all $x\in X$. We prove that, if R_n-R_{n-1} factors uniformly through some l_p and satisfies a certain additional symmetry condition, then X has an unconditional basis. As an application we study conditions on $\Lambda\subset\mathbb{Z}$ such that $L_\Lambda=$ closed span $\{z^k:k\in\Lambda\}\subset L_1(\mathbb{T}),$ where $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$, has an unconditional basis. Examples include the Hardy space $H_1=L_{\mathbb{Z}_+}$.

1. Introduction

Let X be a given separable Banach space (real or complex). We study an abstract condition on X which ensures that X has an unconditional basis without constructing an explicit one. Then we apply our results to spaces of the form

$$L_{\Lambda} = \operatorname{closed span}\{z^k : k \in \Lambda\} \subset L_1(\mathbb{T})$$

for special subsets $\Lambda \subset \mathbb{Z}$ where $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. In particular we want to find out what abstract condition on $H_1 = L_{\mathbb{Z}_+}$ is responsible for the existence of an unconditional basis in H_1 .

Fix some p with $1 \leq p \leq \infty$. We say that a sequence of linear operators $U_n \colon X \to X$ factors uniformly through l_p if there are linear operators $T_n \colon X \to l_p$ and $S_n \colon l_p \to X$ with $U_n = S_n T_n$ and $\sup_n ||T_n|| \cdot ||S_n|| < \infty$.

It is clear that we can replace l_p by any \mathcal{L}_p -space or by $l_p^{m_n}$, for some m_n , in the preceding condition.

Received June 3, 2003

If, in addition, all operators U_n are projections then it is easily seen that U_nX is uniformly isomorphic to $(T_nS_n)^2l_p$ and $(T_nS_n)^2: l_p \to l_p$ is a projection.

If $U_n - U_{n-1}$, instead of U_n , factors uniformly through l_p then so does $U_{n+k} - U_n$ for any fixed k. (This follows from $U_{n+k} - U_n = \sum_{j=1}^k (U_{n+j} - U_{n+j-1})$.)

A sequence of bounded linear operators $R_n: X \to X$ of finite rank is called a commuting approximating sequence (c.a.s.) if $\lim_{n\to\infty} R_n x = x$ for all $x \in X$ and $R_n R_m = R_{\min(n,m)}$ whenever $n \neq m$. If there exists such a sequence then X is said to have the commuting bounded approximation property (CBAP).

If there is a c.a.s. $\{R_n\}_{n=1}^{\infty}$ consisting of projections, i.e. where in addition $R_nR_n = R_n$ for all n, then X is said to have a finite dimensional Schauder decomposition (FDD). It is well-known that there are Banach spaces with CBAP which do not have FDD ([10], see also [12]).

On the other hand, if X has a c.a.s. $\{R_n\}_{n=1}^{\infty}$ such that the operators $R_n - R_{n-1}$ factor uniformly through some l_p then X has a basis, i.e. a special c.a.s. $\{P_n\}_{n=1}^{\infty}$ consisting of projections where, in addition, dim $(P_n - P_{n-1})X = 1$ for all n ([8]). (In the following always put $R_0 = R_{-1} = \cdots = 0$.)

Our aim is to derive a similar result for unconditional bases. Recall that X is said to have an unconditional basis if it has a c.a.s. $\{P_n\}_{n=1}^{\infty}$ consisting of projections such that $\dim(P_n - P_{n-1})X = 1$ for all n and

$$\sup_{\theta_n \in \{\pm 1\}} \| \sum_n \theta_n (P_n - P_{n-1}) x \| < \infty \quad \text{for all } x \in X.$$

THEOREM I: Let X have a c.a.s. $\{R_n\}_{n=1}^{\infty}$ satisfying the following:

- (1.1) $R_n R_{n-1}$ factors uniformly through l_p for some $p \in [1, \infty]$,
- (1.2) there is $\lambda > 0$ such that, for any linear $U_n: X \to X$ with $||U_n|| \le 1$ and any sequence of indices $\{k_n\}_{n=1}^{\infty}$ with $k_n \ne k_{n'}$ if $n \ne n'$, we have

$$\left\| \sum_{n} (R_{k_n} - R_{k_n-1}) U_n(R_n - R_{n-1}) x \right\| \le \lambda ||x|| \quad \text{for all } x \in X.$$

Then X has an unconditional basis.

We postpone the proof of Theorem I to sections 2 and 3. Here we discuss some applications of Theorem I (with p=1) centered around the classical Hardy space $H_1=L_{\mathbb{Z}_+}$.

Consider a sequence of integers n_k and real numbers a > 0, b > 0 such that

(1.3)
$$n_0 = 0 < n_1 < n_2 < \cdots$$
 and $an_k \le n_{k+1} - n_k \le bn_k$ for all k .

(The prototype for such a sequence is $n_k = 2^k$.) Then we prove in section 4

THEOREM II: Consider $\Lambda \subset \mathbb{Z}_+$ such that there are $q, m_{k,j}, r_{k,j} \in \mathbb{Z}_+$, $j = 1, \ldots, q, k = 1, 2, \ldots$, with

(1.4)
$$\Lambda \cap [n_k, n_{k+2}] = \bigcup_{j=1}^{q} (m_{k,j} \mathbb{Z} + r_{k,j}) \cap [n_k, n_{k+2}] \text{ for all } k.$$

Then L_{Λ} has an unconditional basis.

Remarks: Note that two consecutive intervals $[n_k, n_{k+2}]$ and $[n_{k+1}, n_{k+3}]$ always overlap. It is easy to construct non-trivial examples of Λ satisfying (1.4). If we take $q = m_{k,j} = 1$ and $r_{k,j} = 0$ then we obtain the well-known

COROLLARY ([9, 2, 13]): H_1 has an unconditional basis.

2. Proof of Theorem I if $\sup_n \dim(R_n - R_{n-1})X = \infty$

We start with

- 2.1. LEMMA: Let X have a c.a.s. $\{R_n\}_{n=1}^{\infty}$. Then (1.2) is equivalent to the following condition.
- (2.1) There is $\lambda > 0$ such that, for any sequence of indices k_n with $k_n \neq k_{n'}$ if $n \neq n'$ and any linear $U_n: X \to (R_{k_n} R_{k_n-1})X$ with $||U_n|| \leq 1$, we have

$$\left\| \sum_{n} U_n(R_n - R_{n-1})x \right\| \le \lambda ||x||, \quad x \in X.$$

Proof: Of course, by definition, (2.1) implies (1.2). Now assume (1.2) and consider $U_n: X \to (R_{k_n} - R_{k_n-1})X$. Put

$$Ux = \sum_{n} (R_{k_n} - R_{k_{n-1}}) U_n (R_n - R_{n-1}) x,$$

$$Vx = \sum_{n} (R_{k_{n-1}} - R_{k_{n-2}}) U_n (R_n - R_{n-1}) x \quad \text{and}$$

$$Wx = \sum_{n} (R_{k_n+1} - R_{k_n}) U_n (R_n - R_{n-1}) x, x \in X.$$

Then (1.2) implies ||U||, ||V||, $||W|| \le \lambda$. We have

$$\sum_{n} U_n(R_n - R_{n-1})x = (U + V + W)x, \quad x \in X.$$

This proves (2.1).

Now we consider a c.a.s. $\{R_n\}_{n=1}^{\infty}$ of X such that $\sup_n \dim(R_n - R_{n-1})X = \infty$ and there are linear $T_n: X \to l_p$, $S_n: l_p \to X$ for some $p \in [1, \infty]$ with $S_nT_n = R_n - R_{n-1}$ and $\sup_n ||T_n|| \cdot ||S_n|| < \infty$. We always assume

(2.2) either
$$p = 2$$
 or $\sup_{n} d(T_n X, l_2^{\dim T_n X}) = \infty$

where $d(\cdot,\cdot)$ is the Banach–Mazur distance. This is no restriction. Indeed, if $\sup_n d(T_nX, l_2^{\dim T_nX}) < \infty$ then we just replace p by 2.

Moreover, we assume (1.2). Notice that (1.2) remains true if we replace $\{R_n\}_{n=1}^{\infty}$ by an arbitrary subsequence $\{R_{n_k}\}_{k=1}^{\infty}$.

At first we mention

- 2.2. LEMMA: There is a subsequence $\{R_{n_k}\}_{k=1}^{\infty}$ of $\{R_n\}_{n=1}^{\infty}$ satisfying the following:
 - (i) $R_{n_k} R_{n_{k-1}}$ factors uniformly through l_p , too.
 - (ii) For each positive integer n there is an index k, a subspace $E_n \subset (R_{n_k} R_{n_{k-1}})X$ and a projection $Q_n: X \to E_n$ such that

$$\sup_{n} d(E_n, l_p^n) < \infty, \quad \sup_{n} ||Q_n|| < \infty$$

and

$$Q_n R_{n_j} = R_{n_j} Q_n = \begin{cases} Q_n, & j \ge k, \\ 0, & j < k. \end{cases}$$

Proof: [8], Lemma 2.3.

In the following we assume without loss of generality that $R_{n_j}=R_j$ for all j. Then, in particular, for every n there is an index k_n such that $l_p^n\cong E_n\subset (R_{k_n}-R_{k_n-1})X$ and

(2.3)
$$Q_n R_j = R_j Q_n = \begin{cases} Q_n, & j \ge k_n, \\ 0, & j < k_n. \end{cases}$$

Put

$$Y = \text{closed span } \{(R_1x, (R_2 - R_1)x, (R_3 - R_2)x, \ldots) : x \in \bigcup_{n=1}^{\infty} \text{Fix } R_n\}$$

regarded as subspace of $(\sum_n \oplus (R_n - R_{n-1})X)_{(p)}$. Then we easily obtain, using (2.2),

2.3. LEMMA: Y is isomorphic to l_p , if $1 \le p < \infty$, and to c_0 , if $p = \infty$.

Proof: [8], Lemma 2.1.

From now on we take $T_n: X \to Y$ with

$$T_n x = ((R_k - R_{k-1})(R_{n+1} - R_{n-2})x)_{k=1}^{\infty}$$

and $S_n: Y \to X$ with

$$S_n((R_k - R_{k-1})x)_{k=1}^{\infty} = (R_n - R_{n-1})x.$$

We easily obtain $S_n T_n = R_n - R_{n-1}$. (Recall that $(R_k - R_{k-1})(R_{n+1} - R_{n-2}) = 0$, if k < n-2 and k > n+2, and $(R_n - R_{n-1})(R_{n+1} - R_{n-2}) = R_n - R_{n-1}$.) We have

(2.4)
$$T_n R_m = 0, \quad R_m S_n = 0, \quad \text{if } m < n - 2,$$
 and
$$T_n R_m = T_n, \quad R_m S_n = S_n, \quad \text{if } m > n + 1.$$

Moreover, we define $\tilde{R}_n: Y \to Y$ by

$$\tilde{R}_n((R_k - R_{k-1})x)_{k=1}^{\infty} = ((R_k - R_{k-1})R_n x)_{k=1}^{\infty}.$$

Then $\{\tilde{R}_n\}_{n=1}^{\infty}$ is a c.a.s. of Y with

(2.5)
$$S_n \tilde{R}_n = R_n S_n$$
, $T_n R_n = \tilde{R}_n T_n$ and $(id - \tilde{R}_n) T_n S_n = \tilde{R}_n (id - \tilde{R}_n)$.

We fix a subspace $F_n \subset Y$ with

(2.6)
$$\sup_{n} d(F_n, l_p^{\dim F_n}) < \infty, \quad T_n X \subset F_n \quad \text{and} \quad \tilde{R}_n Y \subset F_n.$$

Conclusion of the proof of Theorem I if $\sup_n \dim(R_n - R_{n-1})X = \infty$: Our strategy is to split X into $X = Y_1 \oplus \sum_n \oplus E_n$, where Y_1 and the spaces E_n are invariant for the operators R_n . This allows us to alter R_n and to produce FDD-projections P_n which still satisfy (1.1) and (1.2). After another modification the summands $(P_n - P_{n-1})X$ are uniformly isomorphic to $l_p^{m_n}$ -spaces which, together with (1.2), yield an unconditional basis. Parallel to R_n on X we study \tilde{R}_n on $Y \sim l_p$ which behaves "locally like X".

We assume (1.1), (1.2), (2.4)–(2.6). Moreover, using Lemma 2.2, for each n we find an index k_n , a subspace $E_n \subset (R_{k_n} - R_{k_n-1})X$ and a projection $Q_n: X \to E_n$ such that $k_1 < k_2 < \cdots$, $\sup_n ||Q_n|| < \infty$, $\sup_n d(E_n, F_n) < \infty$ and (2.3) is satisfied. Let $I_n: E_n \to F_n$ be isomorphisms with $\sup_n ||I_n|| \cdot ||I_n^{-1}|| < \infty$. Put

(2.7)
$$Qx = \sum_{n} (R_{k_n} - R_{k_n-1}) Q_n (R_{k_n} - R_{k_n-1}) x = \sum_{n} Q_n x,$$

 $x \in X$. According to (2.3), in view of (1.2), Q is a bounded projection from X onto $Y_2 := \operatorname{closed\ span}(\bigcup_{n=1}^{\infty} E_n)$. Put $Y_1 = (id - Q)X$. Hence $X = Y_1 \oplus Y_2$. (2.3) implies

(2.8)
$$R_m Q = Q R_m \text{ and } Q R_m (id - R_m) = 0 \text{ for all } m$$

and the operators $R_n|_{Y_2}$ are the FDD-projections of $Y_2 = \sum_m \oplus E_m$ (where some R_n , for different n, might coincide on Y_2). In particular, Y_1 and Y_2 are invariant under all R_m . Moreover, (2.3) and (2.7) also yield $R_n(id - R_n)Q = QR_n(id - R_n) = 0$. Using the definitions of T_n and S_n and (2.8) we obtain

$$(2.9) T_n(id - R_n)(id - Q)S_n = \tilde{R}_n(id - \tilde{R}_n).$$

We have $X = Y_1 \oplus \sum_m \oplus E_m$. Define

$$P_m: Y_1 \oplus \sum_m \oplus E_m \to Y_1 \oplus \sum_m \oplus E_m$$

by

(2.10)
$$P_n(y,(e_k)) = (R_n y + (id - Q)S_n I_n e_n, (e_1, \dots, e_{n-1}, I_n^{-1} T_n (id - R_n) y + I_n^{-1} (id - \tilde{R}_n) I_n e_n, 0, 0, \dots)).$$

(2.8) shows that the definition makes sense. We easily infer

$$P_m P_n = P_{\min(m,n)}$$
 if $|n-m| \ge 3$

(see (2.3) and (2.4)).

As a consequence of (2.5), (2.8) and (2.9) we also obtain $P_n^2 = P_n$. (Recall that (id - Q)y = y if $y \in Y_1$.) (2.10) implies

$$(2.11) (P_{n} - P_{n-1})(y, (e_{k})) =$$

$$((R_{n} - R_{n-1})y + (id - Q)(S_{n}I_{n}e_{n} - S_{n-1}I_{n-1}e_{n-1}), \underbrace{(0, \dots, 0, \dots$$

Next we claim that $P_n - P_{n-1}$ factors uniformly through l_p . To this end put $\hat{Y} = F_{n-1} \oplus F_n \oplus F_{n-1} \oplus F_n$. Then $d(\hat{Y}, l_p^m)$, where $m = \dim \hat{Y}$, does not depend on n. Define $\hat{T}_n \colon X = Y_1 \oplus \sum_m \oplus E_m \to \hat{Y}$ by

$$\hat{T}_n(y,(e_k)) = (T_{n-1}y, T_ny, I_{n-1}e_{n-1}, I_ne_n)$$

and
$$\hat{S}_n$$
: $\hat{Y} \to X = Y_1 \oplus \sum_m \oplus E_m$ by
$$\hat{S}_n(a,b,c,d) = ((id-Q)S_nb + (id-Q)(S_nd - S_{n-1}c), \underbrace{(0,\dots,0)}_{n-2}, \underbrace{I_{n-1}^{-1}c - I_{n-1}^{-1}(id - \tilde{R}_{n-1})c - I_{n-1}^{-1}(id - \tilde{R}_{n-1})a}, \underbrace{I_n^{-1}(id - \tilde{R}_n)b + I_n^{-1}(id - \tilde{R}_n)d, 0, 0, \dots)}.$$

Then, in view of (2.11), we have $\hat{S}_n\hat{T}_n = P_n - P_{n-1}$ and $\sup_n \|\hat{T}_n\| \cdot \|\hat{S}_n\| < \infty$. Thus, $P_n - P_{n-1}$ and hence also $P_n - P_{n-3}$ factors uniformly through l_p . Since the operators $P_{3n} - P_{3n-3}$ are projections, the spaces $(P_{3n} - P_{3n-3})X$ are uniformly isomorphic to uniformly complemented subspaces of l_p . (2.11) implies, together with (2.3), (2.4), (2.7) and (2.8), that

$$\begin{split} P_n - P_{n-1} &= (id - Q)(R_n - R_{n-1}) + (id - Q)S_nI_nQ_n(R_{k_n} - R_{k_{n-1}}) \\ &- (id - Q)S_{n-1}I_{n-1}Q_{n-1}(R_{k_{n-1}} - R_{k_{n-1}-1}) + Q_{n-1}(R_{k_{n-1}} - R_{k_{n-1}-1}) \\ &- I_{n-1}^{-1}(id - \tilde{R}_{n-1})I_{n-1}Q_{n-1}(R_{k_{n-1}} - R_{k_{n-1}-1}) \\ &- I_{n-1}^{-1}T_{n-1}(id - R_{n-1})Q(R_{n+1} - R_{n-3}) + I_n^{-1}T_n(id - R_n)Q(R_{n+2} - R_{n-2}) \\ &+ I_n^{-1}(id - \tilde{R}_n)I_nQ_n(R_{k_n} - R_{k_{n-1}}). \end{split}$$

The definitions of S_n , T_n , I_n , Q_n , E_n and (2.8) show that all preceding eight summands map into spaces of the form $(R_m - R_{m-1})X$ for some m. This proves that (2.1) remains true if we replace R_n by P_n . Using Lemma 2.1, we see that (1.2) is also true for P_n and hence for P_{3n} instead of R_n . In particular, the spaces $A_n := (P_{3n} - P_{3n-3})X$ are the summands of an unconditional FDD of X. (Here take in (1.2) the operators with $U_k x = \theta_k x$, $x \in X$, for arbitrarily fixed $\theta_k \in \{\pm 1\}$.)

Finally, we cut the summands A_n into two subsummands and merge them into new summands. We proceed as follows. Recall, all A_n are uniformly complemented in l_p . We split the spaces A_k into uniformly complemented subspaces $A_k = B_k \oplus C_k$ and define indices $0 = j_0 < j_1 < j_2 < \cdots$ such that $A_k = C_k$ and $B_k = \{0\}$ if $k \notin \{j_1, j_2, \ldots\}$.

We use induction to define the special indices j_n . Start with $j_0=0$. Then assume that we have already $j_0 < j_1 < \cdots < j_{n-1}$ with $A_{j_k} = B_{j_k} \oplus C_{j_k}$, $k=1,\ldots,n-1$. Consider A_n . A_n is uniformly complemented in an l_p^M -space G_n . There are two cases.

Case $n \notin \{j_1, \ldots, j_{n-1}\}$. Using Lemma 2.2 with P_{3n} instead of R_n we find $j_n > \max(j_{n-1}, n)$ such that A_{j_n} contains a uniformly complemented copy of G_n . Hence we can split $A_{j_n} = B_{j_n} \oplus C_{j_n}$ such that, with $D_n = A_n \oplus B_{j_n}$, the Banach-Mazur distance $d(D_n, l_p^m)$, where $m = \dim D_n$, does not depend on n.

Case $n \in \{j_1, \ldots, j_{n-1}\}$. Here we have already $A_n = B_n \oplus C_n$. Find similarly $j_n > j_{n-1}$ and a decomposition $A_{j_n} = B_{j_n} \oplus C_{j_n}$ such that, for $D_n = C_n \oplus B_{j_n}$, the Banach-Mazur distance $d(D_n, l_p^k)$, with $k = \dim D_n$, does not depend on n.

Using this procedure we find an FDD, $X = \sum_n \oplus D_n$, with $\sup_n d(D_n, l_p^{q_n}) < \infty$ for $q_n = \dim D_n$ where all D_n are uniformly complemented subspaces of $A_n \oplus A_{j_n}$. Recall, (P_{3n}) (in place of (R_n)) satisfies (1.2) and we have $A_n = (P_{3n} - P_{3n-3})X$. Since $P_{3n} - P_{3n-3}$ are projections, we conclude that there is a constant $\tau > 0$ satisfying the following.

For every choice of indices l_n with $l_n \neq l_{n'}$ if $n \neq n'$ and every linear $U_n : D_n \to D_{l_n}$ with $||U_n|| \leq 1$ we have $||U|| \leq \tau$, where $U \sum_k d_k = \sum_k U_k d_k$.

Now, let $\{e_{i,n}\}_{i=1}^{q_n}$ be the unit vector basis of the $l_p^{q_n}$ -spaces D_n . Fix $\theta_{i,n} \in \{\pm 1\}$ arbitrarily and put $U_n \sum_{i=1}^{q_n} \alpha_{i,n} e_{i,n} = \sum_{i=1}^{q_n} \alpha_{i,n} \theta_{i,n} e_{i,n}$ for all coefficients $\alpha_{i,n}$. Then we obtain $||U|| \leq \tau \sup_n ||U_n||$ for the operator $U: X \to X$ with $Ue_{i,n} = \theta_{i,n} e_{i,n}$ for all i and n. Hence $\{e_{i,n}\}_{i=1,n=1}^{q_n,\infty}$ is an unconditional basis of X.

3. Proof of Theorem I if $\sup_n \dim(R_n - R_{n-1})X < \infty$

Find uniformly bounded projections $Q_n: X \to R_n(id - R_n)X$. Put

$$P_n = R_n + Q_n(R_{n+1} - R_n).$$

Then we have $P_nP_m=P_{\min(n,m)}$ whenever $|n-m|\geq 2$ or n=m. (Notice that $Q_n(R_{n+1}-R_n)R_n=Q_n(R_n-R_n^2)=R_n-R_n^2$, $R_{n+1}Q_n=Q_n$, $Q_nR_nQ_n=R_nQ_n$ and $R_mQ_n=0$ if m< n.) Hence $\{P_{2n}\}_{n=1}^{\infty}$ are FDD-projections. We obtain

$$P_n - P_{n-2} = (R_n - R_{n-1}) + (R_{n-1} - R_{n-2}) + Q_n(R_{n+1} - R_n) - Q_{n-2}(R_{n-1} - R_{n-2}).$$

This implies that (2.1) and hence, in view of Lemma 2.1, (1.2) remains true if we replace R_n by P_{2n} . Moreover, we have $N:=\sup_n \dim(P_n-P_{n-2})X<\infty$. Find bases $\{x_{i,n}\}_{i=1}^{k_n}$ of $(P_{2n}-P_{2n-2})X$, where $k_n=\dim(P_{2n}-P_{2n-2})X\leq N$, with uniformly bounded basis constants. As before, fix arbitrary $\theta_{i,n}\in\{\pm 1\}$. Then, in view of (1.2), the operators $U\colon X\to X$ with $Ux_{i,n}=\theta_{i,n}x_{i,n}$ for all i and n are uniformly bounded. Hence $\{x_{i,n}\}_{i=1,n=1}^{k_n,\infty}$ is an unconditional basis of X.

4. Proof of Theorem II

Here, let $\|\cdot\|_1$ be the norm in $L_1(\mathbb{T})$ and $\|\cdot\|_{\infty}$ the norm in $L_{\infty}(\mathbb{T})$. Consider a sequence of indices n_k satisfying (1.3). Put

$$R_k \bigg(\sum_j \alpha_j z^j \bigg) = \sum_{|j| \le n_k} \alpha_j z^j + \sum_{n_k < |j| \le n_{k+1}} \frac{n_{k+1} - |j|}{n_{k+1} - n_k} \alpha_j z^j.$$

Then R_k is well-defined on $L_1(\mathbb{T})$ and on $L_{\infty}(\mathbb{T})$. It is well-known (see e.g. [8]) that

$$||R_k|| \le \frac{n_{k+1} + n_k}{n_{k+1} - n_k}$$

in either norm. Hence, in view of (1.3), $||R_k|| \leq 1 + 2/a$. This means the operators R_k are uniformly bounded on $L_1(\mathbb{T})$ as well as on $L_{\infty}(\mathbb{T})$. Moreover, for any $\Lambda \subset \mathbb{Z}$, L_{Λ} is invariant under the operators R_k . We clearly obtain that $\{R_k\}_{k=1}^{\infty}$ is a c.a.s. on all L_{Λ} -spaces.

Put $R(\sum_j \alpha_j z^j) = \sum_{j\geq 0} \alpha_j z^j$. R is well-defined on all trigonometric polynomials. [8] Lemma 4.1. and (1.3) imply

4.1. LEMMA: The operators $R(R_n - R_{n-1})$ are uniformly bounded on $L_{\infty}(\mathbb{T})$ as well as on $L_1(\mathbb{T})$.

Now we concentrate on $H_1 = L_{\mathbb{Z}_+}$. We make use of

4.2. Theorem (Stein, [11, 4]): Let μ_n be complex numbers satisfying

$$\sup_{n} \max(|\mu_n|, n|\mu_n - \mu_{n-1}|) < \infty.$$

Then the operator $V: H_1 \to H_1$ with

$$V(\sum_{k\geq 0}\alpha_k z^k) = \sum_{k\geq 0}\alpha_k \mu_k z^k$$

is bounded.

With (1.3) the preceding theorem implies that, for any choice of $\theta_k \in \{\pm 1\}$, the operator V_{θ} with $V_{\theta}f = \sum_k \theta_k (R_k - R_{k-1})f$, $f \in H_1$, is bounded. (Split V_{θ} into two convolution operators where the numbers μ_j have the form

$$\theta_k \frac{n_{k+1} - j}{n_{k+1} - n_k} \quad \text{if } n_k \le j \le n_{k+1},$$

$$\theta_k \frac{j - n_{k-1}}{n_k - n_{k-1}} \quad \text{if } n_{k-1} \le j \le n_k,$$

and use (1.3).) With the uniform boundedness principle and the Khintchine inequality we obtain

4.3. COROLLARY: There are constants $c_1 > 0$ and $c_2 > 0$ such that every $f \in H_1$ satisfies

$$|c_1||f||_1 \le ||\sqrt{\sum_k |(R_k - R_{k-1})f|^2}||_1 \le c_2||f||_1.$$

If $m, n \in \mathbb{Z}_+$, f and g are trigonometric polynomials of degree m and n, resp., and $\epsilon > 0$, then we easily find $N = N(m, n, \epsilon) \in \mathbb{Z}_+$ such that

$$(1 - \epsilon) \|f + z^N g\|_1 \le \frac{1}{2} \|f + z^N g\|_1 + \frac{1}{2} \|f - z^N g\|_1 \le (1 + \epsilon) \|f + z^N g\|_1$$

and

$$(1 - \epsilon)\|f + z^N g\|_{\infty} \le \|f\|_{\infty} + \|g\|_{\infty} \le (1 + \epsilon)\|f + z^N g\|_{\infty}.$$

Using the Khintchine inequality and induction we obtain

4.4. LEMMA: Let $k_n \in \mathbb{Z}_+$, n = 1, 2, ..., be arbitrary. Then there are universal constants $c_1 > 0$ and $c_2 > 0$ such that, whenever $m_n \in \mathbb{Z}_+$ are large enough and f_n are trigonometric polynomials of degree $\leq k_n$, we have

$$c_1 \| \sum_n z^{m_n} f_n \|_1 \le \| \sqrt{\sum_n |f_n|^2} \|_1 \le c_2 \| \sum_n z^{m_n} f_n \|_1$$

and

$$c_1 \| \sum_n z^{m_n} f_n \|_{\infty} \le \sum_n \| f_n \|_{\infty} \le c_2 \| \sum_n z^{m_n} f_n \|_{\infty}.$$

Now we prove

4.5. LEMMA: There is a universal constant $\mu > 0$ satisfying the following. Whenever k_n are indices with $k_n \neq k_{n'}$ for $n \neq n'$ then there are $m_1 < m_2 < \cdots$ such that

$$\left\| \sum_{n} (R_{k_n} - R_{k_n - 1}) \bar{z}^{m_n} f \right\|_1 \le \mu \|f\|_1 \quad \text{for all } f \in H_1.$$

Proof: (1.3) implies that $\sup_j (n_{j+1} - n_j) = \infty$. Hence, for each j, we find $p_j \in \mathbb{Z}_+$ and $m_j \in \mathbb{Z}_+$ such that

$$n_{p_j} < m_j + n_{k_j-2} < m_j + n_{k_j+2} < n_{p_j+1}.$$

The definition of the R_k implies

$$(4.1) (R_{k_j} - R_{k_j-1})\bar{z}^{m_j}(R_{p_j+1} - R_{p_j-1}) = (R_{k_j} - R_{k_j-1})\bar{z}^{m_j}.$$

Let $r_j: [0, 2\pi] \to \{\pm 1\}$ be the jth Rademacher function. Put

$$U_{\theta}f = \sum_{l} r_{l}(\theta)\bar{z}^{m_{l}}(R_{p_{l}+1} - R_{p_{l}-1})f$$

and

$$V_{\theta}f = \sum_{j} r_{j}(\theta)(R_{k_{j}} - R_{k_{j}-1})f,$$

f a polynomial. Then, in view of Theorem 4.2 and the uniform boundedness principle, there is a constant $\tau > 0$ independent of p_j , k_j and θ such that $||V_{\theta}|| \leq \tau$.

Furthermore, put $Wf = \sum_{j} (R_{k_j} - R_{k_j-1}) \bar{z}^{m_j} f$. Then we obtain, using (4.1), the Khintchine inequality and Corollary 4.3,

$$\begin{split} ||Wf||_{1} &= ||\int V_{\theta} U_{\theta} f d\theta||_{1} \\ &\leq \int ||V_{\theta} U_{\theta} f||_{1} d\theta \\ &\leq \tau \int ||U_{\theta} f||_{1} d\theta \\ &\leq \tau ||\sqrt{\sum_{l} |(R_{p_{l}+1} - R_{p_{l}-1}) f|^{2}}||_{1} \\ &\leq \mu ||f||_{1} \end{split}$$

for some universal constant μ .

4.6. Lemma: The R_n , regarded as operators on H_1 , satisfy (1.2).

Proof: Let $c_1 > 0$ and $c_2 > 0$ be the constants of Lemma 4.4. Fix indices k_n with $k_n \neq k_{n'}$ if $n \neq n'$ and fix $m_n \in \mathbb{Z}_+$ so large that

(4.2)
$$c_1 \| \sum_n z^{m_n} f_n \|_{\infty} \le \sum_n \| f_n \|_{\infty} \le c_2 \| \sum_n z^{m_n} f_n \|_{\infty}$$

for all trigonometric polynomials $f_n \in (R_{k_n} - R_{k_n-1})L_1(\mathbb{T})$ and that the assertion of Lemma 4.5 holds.

Fix linear $U_n: H_1 \to H_1$ with $||U_n|| \le 1$. Define $V_n: L_1(\mathbb{T}) \to L_1(\mathbb{T})$ and $Q_n: L_1(\mathbb{T}) \to L_1(\mathbb{T})$ by

$$V_n f = z^{m_n} U_n (R_n - R_{n-1}) R f$$
 and $Q_n f = (R_{k_n} - R_{k_n-1}) \bar{z}^{m_n} f$.

Hence $Q_n V_n = (R_{k_n} - R_{k_{n-1}}) U_n (R_n - R_{n-1}) R$. Clearly, the operators V_n and Q_n are uniformly bounded by Lemma 4.1. Now, we consider

$$Q_n^* = z^{m_n} (R_{k_n} - R_{k_n-1}) \colon L_{\infty}(\mathbb{T}) \to C(\mathbb{T})$$

and V_n^* . (4.2) implies $\|\sum_n V_n^* Q_n^* f\|_{\infty} \le c_2 \|\sum_n Q_n^* f\|_{\infty}$ for any $f \in L_{\infty}(\mathbb{T})$.

Define \tilde{W} : closed span $(\bigcup_n Q_n^* L_{\infty}(\mathbb{T})) \to L_{\infty}(\mathbb{T})$ by $\tilde{W} \sum_n f_n = \sum_n V_n^* f_n$ for $f_n \in Q_n^* L_{\infty}(\mathbb{T})$. Then we obtain $||\tilde{W}|| \leq c_2$. Using (4.2) and the $(L_{\infty}\text{-valued})$ Hahn-Banach theorem we can extend \tilde{W} to a linear operator $W: L_{\infty}(\mathbb{T}) \to L_{\infty}(\mathbb{T})$ with $||W|| \leq c_2$. By definition we have $WQ_n^* = V_n^*Q_n^*$. Regard $L_1(\mathbb{T})$ as subspace of $L_1^{**}(\mathbb{T})$. Then we obtain $Q_nW^*|_{L_1(\mathbb{T})} = Q_nV_n$. Lemma 4.5 implies $||\sum_n Q_nW^*f||_1 \leq c_2\mu||f||_1$ for any $f \in H_1$. Put $\lambda = c_2\mu$. Finally, we have, for $f \in H_1$,

$$\sum_{n} Q_{n} W^{*} f = \sum_{n} Q_{n} V_{n} f$$

$$= \sum_{n} (R_{k_{n}} - R_{k_{n}-1}) U_{n} (R_{n} - R_{n-1}) f.$$

Conclusion of the proof of Theorem II: We take the preceding operators R_k restricted to $X = L_{\Lambda}$. Put $\Lambda_k = \bigcup_{j=1}^q (m_{k,j}\mathbb{Z} + r_{k,j})$ and let $P_k : L_1(\mathbb{T}) \to L_{\Lambda_k}$ be the projection with

$$P_k(\sum_{j\in\mathbb{Z}}\alpha_jz^j)=\sum_{j\in\Lambda_k}\alpha_jz^j.$$

These projections are uniformly bounded ([8], Lemma 4.2).

Now, define $T_n: X \to L_1(\mathbb{T})$ by $T_n = id_X$ and $S_n: L_1(\mathbb{T}) \to X$ by $S_n = P_n R(R_n - R_{n-1})$, which makes sense according to (1.4). Hence S_n and T_n are uniformly bounded (see Lemma 4.1) and we have $S_n T_n = (R_n - R_{n-1})|_X$. This proves (1.1).

Finally, let $U_n: X \to X$ be linear operators with $||U_n|| \le 1$ and fix indices k_n such that $k_n \ne k_{n'}$ if $n \ne n'$. Then $U_n \circ P_n|_{H_1}$ is an operator from H_1 into H_1 . We have

$$(R_k - R_{k-1})X \subset \operatorname{closed span}\{z^j : j \in [n_{k-1}, n_{k+1}] \cap \Lambda\}.$$

This implies

$$\sum_{n} (R_{k_n} - R_{k_{n-1}}) U_n (R_n - R_{n-1}) x = \sum_{n} (R_{k_n} - R_{k_{n-1}}) U_n P_n (R_n - R_{n-1}) x$$

for all $x \in X$. Now, Lemma 4.6 shows that (1.2) holds for X and $R_n|X$. Thus Theorem I proves Theorem II.

References

- [1] J. Bourgain and V. Milman, Dichotomie du cotype pour les espaces invariants, Comptes Rendus de l'Académie des Sciences, Paris **300** (1985), 263–266.
- [2] L. Carleson, An explicit unconditional basis in H₁, Bulletin des Sciences Mathématiques 104 (1980), 405-416.
- [3] P. G. Casazza, Approximation properties, in Handbook of the Geometry of Banach Spaces Vol. 1 (W. B. Johnson and J. Lindenstrauss, eds.), North-Holland, Amsterdam, 2001, pp. 271–316.
- [4] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bulletin of the American Mathematical Society 83 (1977), 569-645.
- [5] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- [6] J. Lindenstrauss, Extension of compact operators, Memoirs of the American Mathematical Society 48 (1964).
- [7] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer-Verlag, Berlin/Heidelberg/New York, 1977.
- [8] W. Lusky, On Banach spaces with bases, Journal of Functional Analysis 138 (1996), 410-425.
- [9] B. Maurey, Isomorphismes entre espaces H_1 , Acta Mathematica **145** (1980), 79–120.
- [10] C. J. Read, Different forms of the approximation property, unpublished notes.
- [11] E. Stein, Classes H^P, multiplicateurs et fonctions de Littlewood-Paley, Comptes Rendus de l'Académie des Sciences, Paris 263 (1966), 716-719 and 780-781.
- [12] S. J. Szarek, A Banach space without a basis which has the bounded approximation property, Acta Mathematica 159 (1987), 81-98.
- [13] P. Wojtaszczyk, The Franklin system is an unconditional basis in H¹, Arkiv för Matematik 20 (1982), 293–300.
- [14] P. Wojtaszczyk and K. Wozniakowski, Orthonormal polynomial bases in function spaces, Israel Journal of Mathematics **75** (1991), 167–191.